
1

Data in R

1.1 Modes and Classes

Every object in R contains a number of attributes to describe the nature of
the information in that object. Two of the most important attributes of data
in R are the mode and the class. When managing data, it is important to
understand the differences among the different types of data that R supports,
and when problems arise with data, the problem is often that the data is the
incorrect mode or class for a particular operation.

The mode function returns the mode of any object in R, and the class
function returns the class. When working with data, the most commonly en-
countered modes of individual objects are numeric, character, and logical.
However, since data in R usually revolves around a collection of data (for
example, a matrix or dataset), other modes will often be encountered. When
deciding on how data should be stored in R, one important consideration has
to do with the mode of the data being studied. Some objects (like matrices
or other arrays) demand that all the data contained in them be of the same
mode; others (like lists and data frames) allow for multiple modes within a
single object.

In addition to the mode and class function, the typeof function can some-
times provide additional information about the type of an object, although it
is not generally as useful as that returned by mode or class.

One other consideration when planning how data should be entered into
R has to do with categorical data. R provides the factor class to store this
type of data, and factors are automatically treated specially in statistical
models and plotting functions. Values stored as factors require less storage
than regular values, because R need only store each unique level once. If you
examine the mode of a factor object, you’ll notice that it is always numeric,
even though it may display as character data, so special care is needed when
working with factors. The class function, or one of the predicate functions
described in Section 1.3 can be used to recognize factors once they are stored
in R. Further information about factors can be found in Chapter 5.

2 1 Data in R

Another important data type concerns dates and times. While this sort of
information can be stored as a simple character representation, it is difficult to
manipulate in this form. R provides several mechanisms for storing dates, in-
cluding the built-in Date, POSIXlt, and POSIXct classes, and the contributed
chron package. The differences among these different representations as well
as information on manipulating dates and times are provided in Chapter 4.

Finally, one of the most often encountered modes of data is the list. Lists
are the most flexible way of storing data in R, since they can accommodate
objects of different modes and lengths. Many functions in R use lists to hold
their results, and lists provide a very attractive way of accumulating informa-
tion incrementally. When you’ve got a list and need to find the modes of the
components of the list, the sapply function (discussed in detail in Section 8.3)
can be used as shown in the following example:

> mylist = list(a=c(1,2,3),b=c("cat","dog","duck"),
+ d=factor("a","b","a"))
> sapply(mylist,mode)

a b d
"numeric" "character" "numeric"

> sapply(mylist,class)
a b d

"numeric" "character" "factor"

1.2 Data Storage in R

It’s very rare that single values (scalars) will be the center of an R session, so
one of the first questions encountered when working with data in R is what
sort of object should be used to hold collections of data. The vector is the
simplest way to store more than one value in R. The c function (mnemonic
for catenate or combine) allows you to quickly enter data into R:

> x = c(1,2,5,10)
> x
[1] 1 2 5 10
> mode(x)
[1] "numeric"
> y = c(1,2,"cat",3)
> y
[1] "1" "2" "cat" "3"
> mode(y)
[1] "character"
> z = c(5,TRUE,3,7)
> z
[1] 5 1 3 7
> mode(z)
[1] "numeric"

1.2 Data Storage in R 3

Notice that when elements of different modes are combined with c, the mode
of the resultant vector is different than that of its parts. In particular, if any of
the elements are character, the other elements will be converted to characters;
logical elements combined with numeric elements will be converted to numeric
equivalents with TRUE becoming 1 and FALSE becoming 0. The c function can
also be used to combine vectors:

> all = c(x,y,z)
> all
[1] "1" "2" "5" "10" "1" "2" "cat" "3" "5"
[10] "1" "3" "7"

Once again, since some of the elements of the combined vector have mode of
character, the entire vector is converted to character.

The elements of the vector can be assigned names, which will be used
when the object is displayed, and which can also be used to access elements
of the vector through subscripts (Section 6.1). Names can be given when the
vector is first created, or they can be added or changed after the fact using
the names assignment function:

> x = c(one=1,two=2,three=3)
> x
one two three
1 2 3

> x = c(1,2,3)
> x
[1] 1 2 3
> names(x) = c(’one’,’two’,’three’)
> x
one two three
1 2 3

A further feature of the names assignment function is that it can be indexed
to modify only selected elements of the names:

> names(x)[1:2] = c(’uno’,’dos’)
> x
uno dos three
1 2 3

One surprising fact about vectors in R is that, in many cases if two vec-
tors involved in an operation are not of the same length, R will recycle the
values of the shorter vector in order to make the lengths compatible. This is
a generalization of the fact that when a vector and a scalar are involved in an
operation, R will silently repeat the scalar value to correspond to each value
of the vector. So to add one to each element of a vector, a scalar value of 1
can be used:

4 1 Data in R

> nums = 1:10
> nums + 1
[1] 2 3 4 5 6 7 8 9 10 11

The same sort of thing will happen if the one operand is a vector of a different
length than the other:

> nums = 1:10
> nums + c(1,2)
[1] 2 4 4 6 6 8 8 10 10 12

Note how the values 1 and 2 are repeated in order to allow the operation to
succeed. R will be silent about these kind of operations, unless the length of
the longer object is not an even multiple of the length of the shorter object:

> nums = 1:10
> nums + c(1,2,3)
[1] 2 4 6 5 7 9 8 10 12 11
Warning message:
longer object length

is not a multiple of shorter object length in:
nums + c(1, 2, 3)

Notice that this is just a warning; the operation is still carried out.
Arrays are a multidimensional extension of vectors, and, like vectors, all of

the objects of an array must be of the same mode. The most commonly used
array in R is the matrix, a 2-dimensional array. Matrices are stored internally
as vectors, with the columns of the matrix “stacked” on top of each other.
The matrix function converts a vector to a matrix. The nrow= and ncol=
arguments to matrix specify the number of rows and columns, respectively.
If only one of these arguments is given, the other will be calculated based on
the length of the input data.

Since matrices are internally stored by columns, matrix assumes that the
input vector will be converted to a matrix by columns; the byrow=TRUE argu-
ment can be used to override this in the more common case where the matrix
needs to be read in by rows. The mode of a matrix is simply the mode of
its constituent elements; the class of a matrix will be reported as matrix. In
addition, matrices have an attribute called dim which is a vector of length two
containing the number of rows and columns. The dim function returns this
vector; alternatively, individual elements can be accessed using the nrow or
ncol functions.

Names can be assigned to the rows and/or columns of matrices, through
the dimnames= argument of the matrix function, or after the fact through the
dimnames or row.names assignment function. Since the number of rows and
columns of a matrix need not be the same, the value of dimnames must be a
list; the first element is a vector of names for the rows, and the second is a
vector of names for the columns. Like vectors, these names are used for display,
and can be used to access elements of the matrix through subscripting. To

1.2 Data Storage in R 5

provide names for just one dimension of a matrix, use a value of NULL for the
dimension for which you don’t wish to provide names. For example, to create
a 5×3 matrix of random numbers (See Section 2.2), and to name the columns
A, B, and C, we could use statements like

> rmat = matrix(rnorm(15),5,3,
+ dimnames=list(NULL,c(’A’,’B’,’C’)))
> rmat

A B C
[1,] -1.15822190 -1.1431019 0.464873841
[2,] -0.04083058 0.3705789 0.320723479
[3,] -0.25480412 -0.5972248 -0.004061773
[4,] 0.48423349 -0.8727114 -0.663439822
[5,] 1.93566841 -0.2338928 -0.605026563

Similarly, we could first create the matrix, then provide the dimnames sepa-
rately:

dimnames(rmat) = list(NULL,c(’A’,’B’,’C’))

Lists provide a way to store a variety of objects of possibly varying modes
in a single R object. Note that when forming a list, the mode of each object
in the list is retained:

> mylist = list(c(1,4,6),"dog",3,"cat",TRUE,c(9,10,11))
> mylist
[[1]]
[1] 1 4 6

[[2]]
[1] "dog"

[[3]]
[1] 3

[[4]]
[1] "cat"

[[5]]
[1] TRUE

[[6]]
[1] 9 10 11

> sapply(mylist,mode)
[1] "numeric" "character" "numeric" "character"
[5] "logical" "numeric"

6 1 Data in R

The important thing to notice about lists is that the elements of the list need
not be of the same mode; the simple example provided also shows that the
length of the elements need not be the same.

Like other objects in R, list elements can be named, either when the list
is being created, or by using the names assignment function if the list already
exists. The list function takes no keyword arguments, so list elements can
be named when they are passed to the function:

> mylist = list(first=c(1,3,5),second=c(’one’,’three’,’five’),
+ third=’end’)
> mylist
$first
[1] 1 3 5

$second
[1] "one" "three" "five"

$third
[1] "end"

The same result can be achieved using the names function after creating the
(unnamed) list:

> mylist = list(c(1,3,5),c(’one’,’three’,’five’),’end’)
> names(mylist) = c(’first’,’second’,’third’)

Many data analyses revolve around the idea of a dataset, a collection
of related values which can be treated as a single unit. For example, you
might collect information about different companies; for each company you
would have a name, an industry type, the number of employees, type of health
care plans offered, etc. For each of the companies you study you would have
values for each of these variables. If we store the data in a matrix, with rows
representing observations and columns representing variables, it would be easy
to access the data, but since the modes of the variables in a dataset will often
not be the same, a matrix would force, say, numeric variables to be stored as
character variables. To allow the ease of indexing that a matrix would provide
while accommodating different modes, R provides the data frame. A data
frame is a list with the restriction that each element of the list (the variables)
must be of the same length as every other element of the list. Thus, the mode
of a data frame is list, and its class is data.frame. While there is some
overhead for storing data in a data frame as opposed to a matrix, data frames
are the preferred method for working with “observations and variables”-style
datasets.

1.4 Structure of R Objects 7

1.3 Testing for Modes and Classes

While the mode or class of an object can easily be examined through the
mode and class functions, in many cases R provides a simpler way to verify
whether an object has a particular mode, or is a member of a particular
class. A large number of functions in R, beginning with the string “is.”,
can be used to test if an object is of a particular type. Among the many
such predicate functions available in R are is.list, is.factor, is.numeric,
is.data.frame, and is.character. These functions can be used to make
sure that the data you’re working with will behave the way that you expect,
or that functions that you write will work properly with a variety of data.

Although R is not a true object-oriented language, many functions in R,
collectively known as generic functions, will behave differently depending on
the class of their arguments. For a given class, you can find out which func-
tions will treat the class specially through the methods function. For more
information about the object-oriented models in R, see Section 2.5.

1.4 Structure of R Objects

For simple cases such as vectors, matrices, and data frames, it’s usually
straightforward to determine what an object in R contains; examining the
class and mode of the object, along with its length or dim attribute, should
be sufficient to allow you to work effectively with the object. This process can
conveniently be carried out for all the objects in a workspace with the ls.str
function. However, in some cases, especially with nested lists, it can be diffi-
cult to understand how information is arranged in the object, and displaying
the object in its entirety rarely elucidates the structure in these cases. The fol-
lowing examples are artificial, and have been kept small to reduce space, but
they illustrate some strategies for getting an understanding of the structure
of data in R.

Returning to an earlier example, suppose we have the following list:

> mylist = list(a=c(1,2,3),b=c("cat","dog","duck"),
+ d=factor("a","b","a"))

The summary function will provide the names, lengths, classes, and modes of
the elements of the list:

> summary(mylist)
Length Class Mode

a 3 -none- numeric
b 3 -none- character
d 1 factor numeric

This provides useful information, but only looks at top-level elements of the
list. If we have a list whose elements are lists, summary will not examine the
structure of those interior lists:

8 1 Data in R

> nestlist = list(a=list(matrix(rnorm(10),5,2),val=3),
+ b=list(sample(letters,10),values=runif(5)),
+ c=list(list(1:10,1:20),list(1:5,1:10)))
> summary(nestlist)
Length Class Mode

a 2 -none- list
b 2 -none- list
c 2 -none- list

In situations where direct examination provides too much detail, and
summary or similar functions provide too little detail, the str function tries
to provide a workable compromise. With the current example, it can be seen
that str provides details about the nature of all the components of the object,
presented in a display whose indentation provides visual cues to the structure
of the object:

> str(nestlist)
List of 3
$ a:List of 2
..$: num [1:5, 1:2] 0.302 -1.534 1.133 -2.304 0.305
... ..$ val: num 3
$ b:List of 2
..$: chr [1:10] "v" "i" "e" "z" ...
..$ values: num [1:5] 0.438 0.696 0.722 0.164 0.435
$ c:List of 2
..$:List of 2
.. ..$: int [1:10] 1 2 3 4 5 6 7 8 9 10
.. ..$: int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
..$:List of 2
.. ..$: int [1:5] 1 2 3 4 5
.. ..$: int [1:10] 1 2 3 4 5 6 7 8 9 10

The number of elements displayed for each component is controlled by the
vec.len= argument, and can be set to 0 to suppress any values being printed;
the depth of levels displayed for each object is controlled by the max.level=
argument, which defaults to NA, meaning to display whatever depth of levels
is actually encountered in the object.

1.5 Conversion of Objects

To temporarily change the way an object in R behaves, a variety of conversion
routines, each beginning with the string “as.”, are provided. If it makes sense,
these functions can be used to create an object equivalent to the one that
you’re working with, but which has a different mode or class. A simple example
involves numbers which are stored as characters. This may occur when data
is first entered into R, or it may arise as a side effect of some other operation.

1.5 Conversion of Objects 9

Consider the table function, discussed in detail in Section 8.1. This func-
tion will return a vector of integer counts representing how many times each
unique value in an object appears. The vector it returns is named, based on
the unique values encountered. Suppose we use the table function on a vector
of numbers, and then try to use this tabled version of the data to calculate a
sum of all the values:

> nums = c(12,10,8,12,10,12,8,10,12,8)
> tt = table(nums)
> tt
nums
8 10 12
3 3 4
> names(tt)
[1] "8" "10" "12"
> sum(names(tt) * tt)
Error in names(tt) * tt : non-numeric argument

to binary operator

Since the error message suggests that sum was expecting a numeric vector, we
can create a numeric version of names(tt) (without modifying the original
version) using as.numeric:

> sum(as.numeric(names(tt)) * tt)
[1] 102

Of course, not all possible conversions make sense. If an inappropriate
conversion is attempted, R will produce an error or warning message, and
may generate missing values. (See Section 1.6.)

Note that the as. forms for many types of objects behave very differ-
ently than the function which bears the type’s name. For example, notice the
difference between the list function and the as.list function:

> x = c(1,2,3,4,5)
> list(x)
[[1]]
[1] 1 2 3 4 5

> as.list(x)
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

10 1 Data in R

[[4]]
[1] 4

[[5]]
[1] 5

The list function creates a list (of length one) containing the argument it
was passed while as.list converts the vector into a list of the same length
as the vector.

One useful conversion that will take place automatically concerns logical
variables. When a logical variable is used in a numeric context, each occurrence
of TRUE will be treated as 1, while values of FALSE will be treated as 0. Coupled
with the vectorization of most functions, this allows many counting operations
to be performed easily. For example, to find all the values in a vector, x, that
are greater than 0, the expression sum(x > 0) could be used; the number of
unequal elements in two matrices a and b could be calculated as sum(a !=
b).

1.6 Missing Values

Missing values arise in data for a variety of reasons. The missing values may
be part of the original data, or they may arise as part of a computation or
conversion that takes place after you’ve read your data into R. In all cases,
missing values are treated consistently, and will propagate across any com-
putation that involves them, so it’s important to recognize missing values as
early as possible when you’re working with data.

The value NA, without quotes, represents a missing value. You can assign
a variable a value of NA, but to test for a missing value you must use the
is.na function. This function will return TRUE if a value is missing and FALSE
otherwise.

If a missing value occurs as the result of certain computations (for example,
division by zero or taking the logarithm of a negative number), it may display
as Inf or NaN. While the is.na function will recognize these values as missing,
the is.nan function can be used to distinguish this type of missing value from
the ordinary NA value.

1.7 Working with Missing Values

Many of the functions provided with R have arguments that are useful when
your data contain missing values. Most of the statistical summary functions
(mean, var, sum, min, max, etc.) accept an argument called na.rm=, which can
be set to TRUE if you want missing values to be removed before the summary
is calculated. For functions that don’t provide such an argument, the negation

1.7 Working with Missing Values 11

operator (!) can be used in an expression like x[!is.na(x)] to create a vector
which contains only the nonmissing values in x.

The statistical modeling functions (lm, glm, gam, etc.) all have an argu-
ment called na.action=, which allows you to specify a function that will be
applied to the data frame specified by the data= argument before the mod-
eling function processes the data. One very useful choice for this argument is
na.omit, which will return a data frame with any row containing one or more
missing values eliminated. Don’t overlook the fact that na.omit can be called
directly to create such a data frame independent of the modeling functions.
The complete.cases function may also be useful to achieve the same task.

Normally, missing values are not included when a variable is made into a
factor; if you want the missing values to be considered a valid factor level, use
the exclude=NULL argument to factor when the factor is first created. (See
Chapter 5 for more details.)

When importing data from outside sources, missing values may be repre-
sented by some string other than NA. In those cases, the na.strings= argu-
ment of read.table (Section 2.2) can be passed a vector of character values
that should be treated as missing values. Since the na.strings= argument
cannot be set selectively for different columns, it may sometimes be prudent
to read the missing values into R in whatever form they occur, and convert
them later.

